- Get link
- X
- Other Apps
distribuição da velocidade no sistema categorial Graceli.
sábado, 3 de novembro de 2018
teoria Graceli das distribuições progressimais de potenciais, intensidades, fenômenos, energias, e variações de estruturas.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
| a Lei das Distribuições de Velocidades. |
| Quando ensinava matemática como Lucasian Professor na Universidade de Cambridge, o físico e matemático inglês, Sir George Gabriel Stokes (1819-1903), recebeu a visita de um jovem aluno que viera pedir-lhe um Exame de Pós-Graduação. Como era difícil nessa época (final do Século 19), conseguir uma vaga para fazer estudos pós-graduados, esse exame se tornara, também, muito difícil, Stokes, por exemplo, costumava apresentar dez (10) problemas para que o candidato escolhesse apenas um deles para resolvê-lo. Com o objetivo também de selecionar grandes talentos, algumas vezes, escolhia questões insolúveis na época. E assim procedeu, ao apresentar a esse jovem aluno que acabara de procurá-lo, alguns desses problemas, entre os quais se encontrava a célebre questão da distribuição de velocidades das moléculas de um gás, que permanecia insolúvel, apesar de grandes cientistas trabalharem nele, como foi o caso do matemático suíço Daniel Bernoulli (1700-1782) que, embora não o tenha solucionado, acreditava, no entanto, que as velocidades eram aproximadamente iguais. Só que esse jovem estudante escocês chamava-se James Clerk Maxwell (1831-1879), que o solucionou brilhantemente, usando a lei de distribuição de erros (método dos mínimos quadrados) que havia sido deduzida pelo matemático e físico alemão John Karl Friedrich Gauss (1777-1855), em 1795, encontrando desta maneira, a mundialmente conhecida Lei das Distribuições de Velocidades de N moléculas de um gás. Isto ocorreu em 1859. No ano seguinte, em 1860, Maxwell apresentou na Philosophical Magazine 19, p. 19, a seguinte expressão que caracteriza aquela lei (na linguagem atual): teoria Graceli das distribuições progressimais de potenciais, intensidades, fenômenos, energias, e variações de estruturas. OUTRAS DISTRIBUIÇÕES TAMBÉM ACONTECEM PROGRESSIVAMENTE, COMO DE FLUXOS QUÂNTICO, MOMENTUM QUÂNTICO E SALTO QUÂNTICO, POTENCIAL E NUMERO QUÂNTICO, POTENCIAIS ELETROSTÁTICOS, TUNELAMENTOS, INTERAÇÕES DE ÍONS E CARGAS, TRANSFORMAÇÕES E DECAIMENTOS, CONDUTIVIDADES, RESISTÊNCIAS, E OUTROS, FORMANDO UMA TRANS-INTERMECÂNICA DE RELAÇÕES DE DISTRIBUIÇÕES ENTRE AGENTES, FENÔMENOS, ENERGIAS, E OUTROS. E CONFORME CATEGORIAS DE gRACELI. |
a teoria relativista de átomos de um-elétron de Sommerfeld no sistema categorial Graceli.
,
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
| O Modelo Atômico de Bohr-Ishiwara-Wilson-Sommerfeld. . |
| Os grandes êxitos do modelo quântico do átomo formulado pelo físico dinamarquês Niels Hendrik Bohr (1885-1962; PNF, 1922), em 1913 (Philosophical Magazine 26, p. 1; 476; 857), foram: a estabilização da eletrosfera do modelo "planetário" atômico proposto pelo físico neozelandês Barão Ernest Rutherford (1871-1937; PNQ, 1908), de 1911 (Proceedings of the Manchester Literary and Philosophical Society55, p. 18; Philosophical Magazine 5; 21, p. 576; 669); a dedução da fórmula empírica de Balmer-Rydberg (1885/1890) [ Em vista das dificuldades do modelo Bohriano apontadas acima, algumas modificações foram então consideradas para contorná-las. Assim, em 1915 (Philosophical Magazine 29; 30, p. 332; 394), o próprio Bohr introduziu correções relativísticas à massa do elétron para poder explicar a "estrutura fina" do H. Nesse mesmo ano de 1915, os físicos, o alemão Arnold Johannes Wilhelm Sommerfeld (1868-1951) (Sitzungsberichte Bayerischen Akademie Wissenschaften zu München, p. 425), o japonês Jun Ishiwara (1881-1947) (Tokyo Sugaku Buturi-gakkakiwi Kizi 8, p. 106), e o inglês William Wilson (1875-1965) (Philosophical Magazine 29, p. 795), apresentaram uma extensão do modelo Bohriano a mais um grau de liberdade dos elétrons em suas órbitas. Essa extensão, que ficou conhecida como o modelo de Bohr-Ishiwara-Wilson-Sommerfeld é traduzida pela regra de quantização: Ainda em 1915 (Sitzungsberichte der Bayerischen Akademie der Wissenschaften zu München, p. 459), Sommerfeld formulou uma teoria relativista de átomos de um-elétron, obtendo a seguinte expressão para a energia (W) do elétron em sua órbita: Em 1916, o físico russo-norte-americano Paul Sophus Epstein (1883-1966) (Physikalische Zeitschrift 17, p. 148; 313; Annalen der Physik 50, p. 489) e o astrônomo alemão Karl Schwarzchild (1873-1916) (Sitzungsberichte der Bayerischen Akademie der Wissenschaften zu Berlin, p. 548), em trabalhos independentes, apresentaram uma explicação do efeito Stark usando os resultados do modelo de Bohr-Ishiwara-Wilson-Sommerfeld. Ainda em 1916 e usando esses mesmos resultados, o físico e químico holandês Petrus Joseph Wilhelm Debye (1884-1966; PNQ, 1936) (Physikalische Zeitschrift 17, p. 507; Nachrichten Königlich Gesellschaft der Wissenchaften zu Göttingen, p. 142) e Sommerfeld (Physikalische Zeitschrift17, p. 491; Annales de Physique Leipzig 51, p. 1; 125), em trabalhos independentes, explicaram o efeito Zeeman. É interessante registrar que, nesses trabalhos, Sommerfeld propôs um terceiro número quântico m, posteriormente conhecido como número quântico espacial, ao lado dos números quânticos |
| A Teoria do Elétron de Lorentz NO SISTEMA CATEGORIAL GRACELI. |
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
5) A força que o campo eletromagnético exerce sobre a unidade de volume da matéria eletricamente carregada com densidade r é dada por (na notação atual):
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
| A Teoria do Elétron de Lorentz. . |
| O físico holandês Hendrik Antoon Lorentz (1853-1928; PNF, 1902) defendeu sua Tese de Doutoramento na Universidade de Leiden, em 1875, recebendo o grau: suma cum laude approbatur. Seu trabalho de tese versou sobre a Teoria Eletromagnética, desenvolvida pelo físico e matemático escocês James Clerk Maxwell (1831-1879) e apresentada em seu famoso livro intitulado A Treatise on Electricity and Magnetism, publicado em 1873. Lorentz tratou de certos aspectos não abordados naquela teoria, como, por exemplo, a maneira pela qual a onda eletromagnética Maxwelliana se refletia ou se refratava.Um dos grandes sucessos da Teoria Maxwelliana foi a identificação da luz como sendo uma onda eletromagnética e que se propaga, em um meio homogêneo, com a velocidade Segundo a Teoria Ondulatória da Luz desenvolvida pelo físico francês Augustin Jean Fresnel (1788-1827), em seus trabalhos realizados nas décadas de 1810 e 1820, a velocidade da luz (V) em um meio homogêneo e isotrópico, de índice de refração n, é dada por V=c/n. Usando o resultado acima, Maxwell obteve, para meios dielétricos ( Em 1887 (Annalen der Physik 31, p. 421), o físico alemão Heinrich Rudolf Hertz (1857-1894) publicou um trabalho no qual registrou as experiências que realizou com osciladores e, com os mesmos, produziu radiações eletromagnéticas, hoje conhecidas como microondas ou ondas Hertzianas. Ele chegou a medir o seu comprimento de onda: 66 cm. No entanto, apesar desse sucesso experimental da Teoria de Maxwell, esta era incapaz de explicar a dispersão da luz, segundo a qual os raios de luz ao atravessarem um pedaço de vidro ou gotículas de água (como no arco-íris), são diferentemente desviados conforme a sua cor (violeta, por exemplo, é mais fortemente refratada do que a vermelha). Ora, conforme a lei de Snell-Descartes nos ensina, o desvio de um raio luminoso em um certo meio está relacionado com o seu índice de refração n(sen i/sen r = n). Porém, na Teoria de Maxwell, conforme vimos acima, Se a luz é uma "onda provocada por oscilações de cargas elétricas", conforme previsão de Maxwell e confirmação de Hertz, onde estavam as cargas elétricas responsáveis por essas oscilações, indagou Lorentz? Para responder a esta indagação, Lorentz começou, em 1892 (Archives Néerlandaises des Sciences Exactes et Naturales 25, p.363), a formular sua Teoria dos Elétrons, tendo como fundamento teórico o eletromagnetismo Maxwelliano. Desse modo, Lorentz se propôs a formular sua teoria a partir dos seguintes postulados: 1) Todas as ações eletromagnéticas acontecem por mediação de um éter imóvel; 2) A eletricidade possui uma estrutura corpuscular - os "elétrons" (qualquer partícula carregada positiva ou negativamente) -, que são os constituintes dos corpos ponderáveis, e são, por sua vez, os vínculos entre a matéria e o éter; 3) O campo eletromagnético tem sua origem nos "elétrons" e atua somente neles próprios; 4) O campo eletromagnético obedece às equações de Maxwell escritas em relação a um sistema de referência em repouso em relação ao éter; 5) A força que o campo eletromagnético exerce sobre a unidade de volume da matéria eletricamente carregada com densidade r é dada por (na notação atual): De posse desses postulados, Lorentz explicou a dispersão da luz. Vejamos como. Ele supôs que os "elétrons" no interior dos meios transparentes eram distribuídos de uma certa maneira e livre de oscilarem com uma certa freqüência angular própria ( Além da explicação desse fenômeno luminoso, Lorentz foi capaz, com a sua Teoria dos Elétrons, de predizer que, se um átomo radiante fosse colocado em uma região contendo um forte campo magnético (H), as oscilações de seus "elétrons" deveriam sofrer alterações, fazendo com que cada linha espectral que esse mesmo átomo emite na ausência do campo magnético, quando excitado, fosse decomposta em três por interferência desse referido campo. E afirmou mais ainda, quando a observação é feita na direção de , aparecerão apenas duas linhas polarizadas circularmente e em sentido inverso uma da outra; quando a observação é feita perpendicularmente a esse campo, aparecerão as três linhas, sendo a central polarizada linearmente à direção de H (a conhecida componente p), e as duas extremas, polarizadas também linearmente, porém perpendicularmente à direção do campo (componente s; essa denominação deriva da palavra alemã senkrecht que significa perpendicular). Essas predições teóricas de Lorentz foram confirmadas por seu aluno, o físico holandês Pieter Zeeman (1865-1943; PNF, 1902), em 1896 (Verhandlungen der Physikalischen Gesellschaft zu Berlin 7, p. 128), ao observar que a linha D do sódio (Na), separava-se em três, quando uma amostra desse elemento químico era colocada em uma região de forte campo magnético. Esse é o mundialmente conhecido efeito Zeeman normal. Esse efeito foi demonstrado, em 1897 (Annalen der Physik 63, p. 278), por Lorentz e, independentemente, pelo físico inglês Sir Joseph J. Larmor (1857-1942), ainda em 1897 (Philosophical Magazine 44, p. 503). Eles usaram argumentos distintos. Lorentz, ao considerar que seus "elétrons" estavam preso quase-elasticamente aos átomos, demonstrou que na presença de H, eles oscilavam na direção desse campo com freqüência própria É ainda oportuno registrar que Lorentz, usando sua Teoria de Elétrons, demonstrou o magnetismo de rotação, descoberto pelo físico francês Dominique Jean Arago (1786-1853), em 1826 (Annales de Chimie et de Physique 32, p. 213), bem como demonstrou que a solução de uma equação de onda não-homogênea satisfeita pelos potenciais elétricos (escalar f ou vetor |
A Dispersão da Luz e as Séries (Raias) Espectrais NO SISTEMA CATEGORIAL GRACELI.
.
.
.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
| A Dispersão da Luz e as Séries (Raias) Espectrais. . |
| Parece haver sido o estadista e filósofo romano Sêneca (4 a.C. - 65 d.C.) o primeiro a fazer uma observação espectroscópica ao ver a luz solar sofrer uma decomposição, nas cores do arco-íris, ao atravessar um pedaço de vidro. A partir daí, certamente, muitos físicos perceberam a decomposição espectral da luz no vidro, contudo, foi o físico inglês Sir Isaac Newton (1642-1727) quem fez um estudo mais apurado dessa dispersão. Com efeito, em 1666, em um quarto escuro e ao fazer passar a luz solar branca em um prisma (comprado na feira de Sturbridge, por volta de 1665), ele observou a sua decomposição nas cores do arco-íris. Convencido de que essas cores estavam presentes na própria luz branca solar e que as mesmas não foram criadas no prisma, Newton realizou um outro tipo de experiência na qual fez passar as cores dispersadas, pelo primeiro prisma, por um segundo prisma invertido em relação ao primeiro, reproduzindo, dessa forma, e em uma tela, a luz branca original. É oportuno registrar que Newton, em suas experiências sobre a dispersão da luz e no relato que fez delas e de outras experiências em Óptica, no livro intitulado Opticks or A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light, publicado em 1704, não tenha feito nenhum registro relevante das famosas raias espectrais. É provável que ele, se as observou, haja considerado como decorrentes de defeitos do vidro. Aliás, essas raias, também foram registradas pelo químico e físico inglês William Hyde Wollaston (1766-1828), em 1802 (Philosophical Transactions 92, p. 365), depois de observar o espectro solar. Nessa ocasião, ele chegou a observar cerca de sete linhas escuras, que ele denominou com letras do alfabeto. No entanto, pensando tratar-se apenas dos limites das cores do espectro solar, não aprofundou essa descoberta.O estudo sistemático das raias (linhas) espectrais, conhecido como espectroscopia, foi iniciado pelo físico alemão Joseph von Fraunhofer (1787-1826), em 1814. O resultado desse estudo foi apresentado no artigo publicado na Denkschrift der Königlichen Akademie Wissenschaften zu München 5, p. 193, 1814-1815, no qual descreveu suas observações sobre a presença de linhas escuras no espectro solar, cujas oito principais ele as distinguiu com letras. Dentre as quais, destacam-se: A (vermelho escuro), D (amarelo claro) e H (violeta). Ao construir uma rede de difração, em 1819, Fraunhofer começou a medir o comprimento de onda das raias espectrais solares (mais tarde conhecidas como raias de Fraunhofer), e identificá-las com as letras do alfabeto, como fizera anteriormente. Os resultados dessa medida foram apresentados por ele na Denkschrift der Königlichen Akademie Wissenschaften zu München 8, p. 1, de 1821-1822. Destaque-se que as linhas B, D, b, F, G e H coincidem, respectivamente, com as linhas A, B, f, g, D e E, de Wollaston segundo historiador da ciência inglês Sir Edmund Taylor Whittaker (1873-1956) registrou em seu A History of the Theories of Aether and Electricity: The Classical Theories (Thomas Nelson and Sons Ltd, 1951). Nas mais de 600 linhas que Fraunhofer estudou, ele observou que suas posições eram constantes para o mesmo espectro de um dado elemento químico, quaisquer que fossem as fontes de luz utilizadas para a obtenção do espectro, isto é, luz solar direta do Sol, ou refletida pela Lua ou pelos planetas, por um gás, ou por um metal aquecido. Desse modo, concluiu que cada elemento químico é caracterizado por um espectro, como se fosse uma verdadeira impressão digital. Hoje, a difração da luz proveniente de fontes bem afastadas de uma rede de difração, é chamada de difração de Fraunhofer. Uma fórmula empírica para determinar as linhas espectrais do hidrogênio (H) foi obtida pelo físico e matemático suíço Johann Jakob Balmer (1825-1898), em 1885 (Verhandlungen der Naturforscher Gesellchaft zu Basel 7, p. 548). Sua expressão é a seguinte (em milímetros - mm): Em 1890 (Philosophical Magazine 29, p. 331), o físico sueco Johannes Robert Rydberg (1854-1919) expressou a fórmula de Balmer em termos do número de ondas (inverso do comprimento de onda: Ainda em 1896 (Astrophysical Journal 4, p. 369), o físico e astrônomo norte-americano Edward Charles Pickering (1846-1919) descreveu as experiências que realizou sobre o espectro de algumas estrelas, dentre elas a z-Puppis, e que ficaram conhecidas com as séries de Pickering. Note-se que essas séries apresentavam um fato curioso: elas praticamente coincidiam com as séries de Balmer, apenas de maneira alternada, isto é, a primeira série de Balmer ( Em 1908, dois novos resultados para o estudo da Espectroscopia foram encontrados. O primeiro deles (Annales de Physique Leipzig 27, p. 537) foi obtido pelo físico alemão Louis Carl Heinrich Friedrich Paschen (1865-1947). Ele descobriu uma nova série de linhas espectrais do hidrogênio na região do infravermelho, hoje conhecida como a série de Paschen. [Note-se que Paschen, em 1916 (Annalen der Physik 1, p. 901), foi o primeiro a observar o desdobramento das linhas espectrais do hélio ionizado ( Apesar dessa explicação, havia uma questão maior. Como demonstrá-la. Além disso, não se conseguia demonstrar as fórmulas de Balmer e de Rydberg-Schuster. Essas explicações só ocorreram com o modelo atômico proposto pelo físico dinamarquês Niels Henrik David Bohr (1885-1962; PNF, 1922), em 1913. Aliás, esse modelo, além de explicar as séries de Pickering como devidas ao hélio ( É oportuno registrar que a dispersão da luz foi explicada pelo físico holandês Hendrik Antoon Lorentz (1853-1928; PNF, 1902), usando a Teoria do Elétron que iniciou a elaborar, em 1892, baseada na Teoria Eletromagnética Maxwelliana. Com sua Teoria do Elétron, Lorentz mostrou que o índice de refração n de um material transparente depende da freqüência (v) da luz que o atravessa e sofre dispersão, isto é: |
distribuições das velocidades no sistema categorial Graceli.
,
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..
X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
| a Lei das Distribuições de Velocidades. |
| Quando ensinava matemática como Lucasian Professor na Universidade de Cambridge, o físico e matemático inglês, Sir George Gabriel Stokes (1819-1903), recebeu a visita de um jovem aluno que viera pedir-lhe um Exame de Pós-Graduação. Como era difícil nessa época (final do Século 19), conseguir uma vaga para fazer estudos pós-graduados, esse exame se tornara, também, muito difícil, Stokes, por exemplo, costumava apresentar dez (10) problemas para que o candidato escolhesse apenas um deles para resolvê-lo. Com o objetivo também de selecionar grandes talentos, algumas vezes, escolhia questões insolúveis na época. E assim procedeu, ao apresentar a esse jovem aluno que acabara de procurá-lo, alguns desses problemas, entre os quais se encontrava a célebre questão da distribuição de velocidades das moléculas de um gás, que permanecia insolúvel, apesar de grandes cientistas trabalharem nele, como foi o caso do matemático suíço Daniel Bernoulli (1700-1782) que, embora não o tenha solucionado, acreditava, no entanto, que as velocidades eram aproximadamente iguais. Só que esse jovem estudante escocês chamava-se James Clerk Maxwell (1831-1879), que o solucionou brilhantemente, usando a lei de distribuição de erros (método dos mínimos quadrados) que havia sido deduzida pelo matemático e físico alemão John Karl Friedrich Gauss (1777-1855), em 1795, encontrando desta maneira, a mundialmente conhecida Lei das Distribuições de Velocidades de N moléculas de um gás. Isto ocorreu em 1859. No ano seguinte, em 1860, Maxwell apresentou na Philosophical Magazine 19, p. 19, a seguinte expressão que caracteriza aquela lei (na linguagem atual): OUTRAS DISTRIBUIÇÕES TAMBÉM ACONTECEM PROGRESSIVAMENTE, COMO DE FLUXOS QUÂNTICO, MOMENTUM QUÂNTICO E SALTO QUÂNTICO, POTENCIAL E NUMERO QUÂNTICO, POTENCIAIS ELETROSTÁTICOS, TUNELAMENTOS, INTERAÇÕES DE ÍONS E CARGAS, TRANSFORMAÇÕES E DECAIMENTOS, CONDUTIVIDADES, RESISTÊNCIAS, E OUTROS, FORMANDO UMA TRANS-INTERMECÂNICA DE RELAÇÕES DE DISTRIBUIÇÕES ENTRE AGENTES, FENÔMENOS, ENERGIAS, E OUTROS. E CONFORME CATEGORIAS DE gRACELI. |
Subscrever: Mensagens (Atom)
- Get link
- X
- Other Apps
Comments
Post a Comment